Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+(p5, p5) → p10
+(+(x, y), z) → +(x, +(y, z))
+(p1, +(p1, x)) → +(p2, x)
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p2, +(p2, p2)) → +(p1, p5)
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)
+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+(p5, p5) → p10
+(+(x, y), z) → +(x, +(y, z))
+(p1, +(p1, x)) → +(p2, x)
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p2, +(p2, p2)) → +(p1, p5)
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)
+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+(p5, p5) → p10
+(+(x, y), z) → +(x, +(y, z))
+(p1, +(p1, x)) → +(p2, x)
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p2, +(p2, p2)) → +(p1, p5)
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)
+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+(p5, p5) → p10
+(p1, +(p1, x)) → +(p2, x)
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p2, +(p2, p2)) → +(p1, p5)
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, +(p5, x)) → +(p5, +(p10, x))
Used ordering:
Polynomial interpretation [25]:
POL(+(x1, x2)) = 2·x1 + 2·x2
POL(p1) = 2
POL(p10) = 0
POL(p2) = 2
POL(p5) = 2
POL(y) = 0
POL(z) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
+(+(x, y), z) → +(x, +(y, z))
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p10, p1) → +(p1, p10)
+(p10, p2) → +(p2, p10)
+(p10, p5) → +(p5, p10)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
+(+(x, y), z) → +(x, +(y, z))
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p10, p1) → +(p1, p10)
+(p10, p2) → +(p2, p10)
+(p10, p5) → +(p5, p10)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
+(p5, p1) → +(p1, p5)
+(p5, p2) → +(p2, p5)
+(p10, p1) → +(p1, p10)
+(p10, p2) → +(p2, p10)
+(p10, p5) → +(p5, p10)
Used ordering:
Polynomial interpretation [25]:
POL(+(x1, x2)) = 2·x1 + x2
POL(p1) = 0
POL(p10) = 2
POL(p2) = 0
POL(p5) = 1
POL(y) = 0
POL(z) = 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
+(+(x, y), z) → +(x, +(y, z))
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, +(p2, x)) → +(p2, +(p5, x))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
+(+(x, y), z) → +(x, +(y, z))
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, +(p2, x)) → +(p2, +(p5, x))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, +(p2, x)) → +(p2, +(p5, x))
Used ordering:
Polynomial interpretation [25]:
POL(+(x1, x2)) = 2·x1 + 2·x2
POL(p1) = 2
POL(p2) = 2
POL(p5) = 0
POL(y) = 0
POL(z) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
+(+(x, y), z) → +(x, +(y, z))
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
+(+(x, y), z) → +(x, +(y, z))
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
+(p2, +(p1, x)) → +(p1, +(p2, x))
Used ordering:
Polynomial interpretation [25]:
POL(+(x1, x2)) = 2·x1 + 2·x2
POL(p1) = 2
POL(p2) = 0
POL(y) = 0
POL(z) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
+(+(x, y), z) → +(x, +(y, z))
+(p2, p1) → +(p1, p2)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
+(+(x, y), z) → +(x, +(y, z))
+(p2, p1) → +(p1, p2)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
+(+(x, y), z) → +(x, +(y, z))
+(p2, p1) → +(p1, p2)
Used ordering:
Polynomial interpretation [25]:
POL(+(x1, x2)) = 1 + 2·x1 + x2
POL(p1) = 1
POL(p2) = 2
POL(y) = 0
POL(z) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RisEmptyProof
Q restricted rewrite system:
R is empty.
Q is empty.
The TRS R is empty. Hence, termination is trivially proven.